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Abstract—This paper introduces a pioneering algorithm for
automatic target recognition, focusing on the role of contrastive
learning in enhancing sensor fusion. The core of our research lies
in demonstrating how supervised contrastive learning enables a
sensor rich in information, such as an RGB camera, to augment
the capabilities of other sensors, like an IR camera, particularly
in classification tasks. By ensuring similar visibility conditions
for both RGB and IR cameras, our approach capitalizes on the
detailed data from the RGB sensor to improve the effectiveness of
the IR sensor in target recognition. This technique not only boosts
the accuracy and representativeness of the recognition system but
also underscores the potential of contrastive learning as a pivotal
tool in sensor fusion. The subsequent exploration of decision-level
fusion through a Bayesian network approach further validates
the ability of our algorithm to integrate disparate sensor data
effectively. The promising results of our study highlight the algo-
rithm’s applicability in diverse sectors, ranging from industrial
to military domains, revolutionizing the way multiple sensors
collaborate for enhanced target recognition.

Index Terms—Supervised Contrastive Learning, Information
Fusion, Bayesian Network

I. INTRODUCTION

Automatic Target Recognition (ATR) systems are utilized in
a wide range of fields, such as autonomous driving, military
operations, and daily life. ATR falls under the subfield of im-
age processing and understanding and is categorized based on
the sensor used. The primary goal of ATR is to increase speed,
reliability, and performance by eliminating human intervention
in target recognition. Early ATR systems processed analog
inputs from infrared systems and used statistical methods for
object-based processing and feature extraction. These systems
were not programmable and exhibited inconsistent and un-
stable performance due to limited image data for training.
However, the Knowledge-Based ATR system improved pattern
recognition performance by optimizing the handling of the
local structure while considering the context in a less optimal
manner later. Roth’s comprehensive survey [1] on primitive
machine learning techniques highlights the rapid growth of this
learning-based application due to advancements in machine
learning and computing resources. The support vector machine
(SVM) approach [2] gained popularity in the early 21st cen-
tury. Researchers have been actively investigating this problem
using various machine-learning algorithms for a considerable
amount of time.

The field of SAR-ATR systems has recently witnessed
significant progress through the adoption of Deep Learning
(DL) techniques. Various studies have contributed to this
progress. For example, Geng et al. [3] laid the groundwork for
implementing DL-based SAR-ATR systems in open fields. An-
other study by Li et al. [4] focused on ensuring interpretabil-
ity, recognition accuracy, and robustness against adversarial
attacks. Zhang et al. [5] presented a model that addressed the
problem of high computation cost and large memory require-
ments, making it suitable for deployment on resource-limited
platforms like microsatellites. Additionally, Zou et al. [6]
proposed a deep attention convolutional network to improve
SAR target recognition accuracy under speckle corruption.
These developments demonstrate the continuing advancement
in the SAR-ATR field, with a focus on enhancing performance
and efficiency via DL techniques. Although advanced machine
learning techniques have demonstrated efficacy in various
domains, they do not consider the potential consequences
resulting from sensor failures, which is a limitation of these
methods [7]. ATR systems require precision, and single-sensor
data may not suffice in certain situations, such as low-light
conditions where RGB sensors fail. Sensor fusion has gained
significant interest from academia, industry, and the military
to improve classification performance. However, implementing
sensor fusion faces several challenges, including uncertainties
in data acquisition from sensors with different modalities,
real-time decision-making based on sensor observations, and
dynamic changes in sensory observations and the environment
[7]. Nonetheless, sensor fusion is similar to the human brain’s
processing of information from different sensory organs, and
handling the data stream is crucial. Therefore, feasible con-
figurations for diverse cases have been proposed to aid in a
systematic approach [8].

Image-based fusion involves three key stages: early, middle,
and late fusion. In the early fusion stage, pixel-level integration
is paramount. This involves combining pixel information. For
example, earth observation satellite data can be enhanced this
way, as outlined in [9]. The middle stage of fusion then
takes over, where the focus shifts to merging processed image
features. Here, the data is represented as feature embeddings,
and various mathematical transforms are applied to enhance
the fusion performance, a process detailed in [10]. Finally,
the late fusion stage leverages the probabilistic results derived



from the preceding stages. This stage is instrumental in mak-
ing final classification decisions, significantly improving the
accuracy of target and anomaly detection in satellite imagery,
as demonstrated in studies [11], [12]. Each stage, building
upon the last, plays a critical role in the comprehensive
analysis of satellite data, from initial data integration to refined
classification and detection.

To enhance the accuracy and representativeness of feature
extraction, we utilize supervised Contrastive Learning (CL)
[13] to propose a new image-fusion approach. Contrastive
Learning, especially in its supervised form, has gained promi-
nence in the field of deep learning for its effectiveness in
learning robust representations. This approach is based on
the principle of learning by comparison. It involves training a
model to distinguish between similar (positive) and dissimilar
(negative) pairs of data [14]. By doing so, the model learns
to encode data points in a way that minimizes intra-class
variance while maximizing inter-class variance, leading to
more discriminative feature representations.

This methodology is particularly advantageous in scenarios
with high-dimensional data from diverse sources. It enables
models to understand nuanced differences and similarities
within the data, which is crucial for tasks such as classification,
object detection, and more [15]. Supervised CL extends this
idea by using label information to guide the process, ensuring
that the learned representations are not only distinct but also
relevant to the specific task at hand [13].

Supervised CL is employed to handle the heterogeneous
data obtained from different imaging sensors effectively in
our work. While RGB cameras provide high-quality visual
information under good lighting conditions, their performance
diminishes in low-visibility scenarios. On the other hand,
IR cameras can capture thermal images in various weather
conditions but have limitations with certain materials. By
integrating Supervised CL, we aim to develop a classifier
that effectively leverages the complementary strengths of both
RGB and IR sensors. This approach surpasses the capabilities
of a single Convolutional Neural Network (CNN) encoder
by creating representations that are robust to the specific
weaknesses of each sensor type. As a result, our classifier,
enhanced with CL, promises to deliver superior performance,
particularly in challenging environmental conditions.

It’s also crucial to highlight the unique strengths of Bayesian
Networks (BN) in this context. Unlike their traditional coun-
terparts, Bayesian inference provides a framework for un-
derstanding how prior beliefs can reverberate in the cortical
hierarchy, corrupting sensory evidence and leading to bistable
perception [16]. Moreover, the combination of perceptual
expectations as prior probabilities with sensory likelihoods
through Bayes’ rule demonstrates the complex interplay be-
tween prior knowledge and sensory information in shaping
perception [17]. This approach enables us to surpass the
limitations of decision-level fusion and enhance the efficiency
of inference in recognizing targets in uncertain conditions.
We’ve done numerical analysis using synthetic data to prove
it’s efficiency in our problem. The pipeline of our work is

shown in Fig. 1

II. FEATURE-LEVEL FUSION

A. Contrastive Learning

Our contrastive network’s architecture is detailed in Fig 2,
3. It is structured with dual encoders—one for infrared (IR)
images and another for RGB images. Both encoders leverage
CNN to transform raw sensor data into structured embeddings.
The two sub-networks have near-identical architectures, with
the primary distinction being the size of the input channels. In
most Simiese-like networks, identical networks are preferred
for weight-sharing purposes. However, in this instance, the ob-
jective is to maintain structural consistency. Consequently, all
components, except the input, remain unchanged, preserving
the inputs in their original form. An alternative approach could
involve expanding the IR data to three channels aligning it with
RGB data. However, this method has been disregarded to avoid
the introduction of extraneous information, thereby retaining
the data in its authentic format. All other parameters, including
convolutional, pooling, fully connected layers, and classifier
parameters, remain consistent across the sub-networks.

The dataset encompasses images from two types of sen-
sors: RGB cameras and IR cameras. Despite their different
modalities, both sensors provide image-based data that can be
effectively processed using CNNs. Our dataset features three
classes of targets: a toy tank, a toy missile launcher, and a null
class (nothing exists in the image, and the data is generated
by white noise), indicative of the absence of a target. Each
class is represented in both RGB and IR formats, ensuring
a comprehensive dataset that challenges the model to learn
and adapt across modalities. The data is systematically divided
into training, testing, and validation sets, as shown in the table
below.

TABLE I: Data Distribution Across Different Categories and
Sensor Types

IR RGB

Smerch T72 Null Smerch T72 Null

Train 153 153 153 300 166 358
Test 32 36 34 66 36 77
Validation 34 34 34 63 35 76

The following configuration characterizes the implementa-
tion of our model:

• Epochs: 200
• Batch Size: 8
• Weight Decay: 5× 10−5

• Learning Rate: 0.001
• Momentum: 0.9
The network employs a Cosine Embedding Loss

(nn.CosineEmbeddingLoss) from Pytorch [18], optimized
using Stochastic Gradient Descent (SGD) [19] with a learning
rate scheduler to adjust the rate at specific milestones.

After we have trained the respective encoders using con-
trastive learning, we freeze the encoders for both IR and



Fig. 1: Illustration of the integrated multi-sensor data fusion and classification pipeline. The system employs feature extraction
from both RGB and IR sensors, which capture complementary visual and thermal data, respectively. Embeddings are then
generated from each sensor stream and fed into a classifier to obtain class predictions along with uncertainty estimates.
Feature-level fusion is applied to combine embeddings before classification, enhancing the representativeness of the features.
The classification results from both the individual sensors and the fused features are then processed through a decision-level
fusion algorithm. This algorithm incorporates prior information and classifies the target with an associated uncertainty, providing
a comprehensive understanding of the target’s class in various environmental conditions.

Fig. 2: Architecture of the Contrastive Learning Network for Multi-Sensor Data. The network comprises two parallel encoders:
one for infrared (IR) data and another for RGB data. Each encoder consists of a CNN followed by pooling and reshaping
operations, which transform the raw sensor data into a one-dimensional embedding. These embeddings are then used to calculate
the cosine similarity loss. Not that all architectural components within the network are identical, with the exception of the
input channel number.

RGB. We then use these frozen encoders to extract features
for training individual classifiers. To investigate the role of
contrastive learning in this process, we conducted two com-
parative experiments. Initially, we train two separate networks
for IR and RGB using the same encoder and classifier architec-
tures without employing any contrastive learning techniques,

resulting in two distinct classification networks. We compare
the outcomes of these networks with classifiers trained using
contrastive learning.

Furthermore, we conducted another experiment where we
swapped the classifiers trained on different modalities, mean-
ing we applied the classifier trained on IR data to RGB



Fig. 3: Classifiers training encoders with contrastive learning

Fig. 4: Classifiers training encoders without contrastive learning

data and vice versa. Similar to the previous experiments,
we evaluate the performance with and without the use of
contrastive learning. The results of these experiments will be
detailed in the following chapter.

III. DECISION-LEVEL FUSION

A. Bayesian Network

The creation of the Bayesian Network (BN) involved certain
assumptions. Firstly, we neglected time dependency, which
means that we did not account for the frequency at which
sensors were being sampled. Secondly, the observation was
obtained in a specific sequence.

The structure of BN is shown in Fig.1 [20], Y ∈ Y is the
true target class where Y = {ysmerch, yt72, ynull} , Λ is the
sensor type (ΛRGB and ΛIR), and Ŷ is the estimated target

class from the sensors Ŷ = {ŷsmerch, ŷt72, ŷnull} . The clas-
sification will be recursively updated for each measurement
starting from the predefined prior probability. The conditional
probability is necessary for updating, and from the chain rule,
we can get the following:

p(Ŷ , Y,Λ) = p(Y |Ŷ ,Λ)p(Λ|Ŷ )p(Ŷ ) (1)

Since the BN is directionally connected:

p(Λ|Ŷ ) = p(Λ) (2)

so that
p(Ŷ , Y,Λ) = p(Y |Ŷ ,Λ)p(Λ)p(Ŷ ) (3)

where p(Λ) is assumed as uniformly distributed.



Fig. 5: Classifiers testing encoders without contrastive learning

Fig. 6: Cross-modality classifiers testing encoders with contrastive learning

For the recursive update, the time step is denoted by k, and
the evidence ek = {ŷk, λk}. The evidence set up to step k
is defined as Mk = {e1, ..., ek}, then the process of iterative
update can then be defined as

p(Y |Mk) =
p(ek|Y )p(Y |Mk−1)

P (Mk)
(4)

where P (Mk) can be eliminated by normalization.
Constrained by the data collection process, we refrained

from incorporating upstream classification results obtained
through contrastive learning. In order to evaluate the efficacy
of our Bayesian network, we employed synthetic data as
depicted in Figure 9. In the context of the artifact scenario,
the designated true target was defined as “Smerch” as per the
reference.

IV. RESULTS

A. Contrastive learning

In Fig. 10a, we see the IR classification without contrastive
learning, yielding an average training accuracy of 82% and
a validation accuracy of 82%. Conversely, Fig. 10b demon-
strates the classification with a classifier trained using an
encoder where contrastive learning has been applied, achieving
markedly higher accuracies — 95% for training and 97% for
validation. This substantial improvement suggests that for IR
data, contrastive learning significantly enhances performance.

Comparatively, Fig. 11a and Fig. 11b both report similar
accuracies for classifiers with and without contrastive learning
(average training accuracy: 78% and average validation accu-
racy: 76%). Unlike the IR data, this parity suggests that in our
contrastive learning training process, IR data may not con-



Fig. 7: Cross-modality classifiers testing encoders without contrastive learning

Fig. 8: Baysian Network

Fig. 9: Synthetic dataset for decision-level fusion with
Bayesian Network

tribute additional useful information for RGB classification.
This discrepancy could be due to the limitations of our dataset,
particularly its lack of diverse scenes. In our experimental
setup, both IR and RGB effectively visualize the target object.
However, the superior performance in IR data classification
might stem from the fact that, in identical scenes, RGB
provides more detailed information than IR, such as color.

(a) IR Single Classification

(b) IR CL Classification

Fig. 10: Infrared Classifications

Therefore, the previous experiments demonstrate a significant
difference in the impact of using contrastive learning for IR
data compared to RGB.

Fig. 12 and Fig. 13 display the results we obtained by swap-
ping the classifiers between different modalities for testing.
This means we applied the classifier trained on RGB data to
IR and vice versa. We then compared the performance on the
test set between classifiers from contrastive learning, as shown
in Fig. 12a and Fig. 13a, and classifiers not using contrastive
learning, as in Fig. 12b and Fig. 13b. The accuracy of both
cases gets improved by around 30%. It is evident that the



(a) RGB CL Classification

(b) RGB Single Classification

Fig. 11: RGB Classifications

(a) IR with RGB CL

(b) IR with RGB Single

Fig. 12: IR with RGB Images

(a) RGB with IR CL

(b) RGB with IR Single

Fig. 13: RGB with IR Images

classifiers using contrastive learning significantly outperform
those that do not.

B. Static Bayesian Network

Fig. 14: Real dataset probability fusion with Bayesian Network

Fig. 15: Real dataset entropy with Bayesian Network



From Fig. 14, we can see the probability of the target being
a smerch converging to “Smerch” (the right target class) after
around 45 rounds and staying 1 consistently, with the entropy
of the system converging to 0 and other confidence dropping
to 0, which fits the true label of the scenario. From Fig. 15,
we see the entropy of this system. drops as the classification
converges to the right class.

V. CONCLUSION

The integration of contrastive learning within a Siamese
neural network architecture represents a significant advance-
ment in the field of machine learning. By using dual en-
coders for processing both IR and RGB images, our net-
work effectively computes structured embeddings, essential
for generating invariant features across sensor modalities. This
methodology not only enhances feature extraction but also
significantly improves the performance of classification tasks.

Our experiments with different data modalities and clas-
sifiers further demonstrate the robustness of the contrastive
learning approach. By comparing networks trained with and
without contrastive learning techniques, we have provided
substantial evidence of its efficacy in enhancing model per-
formance.

Moreover, the development of a Bayesian Network for
decision-level fusion, while simplifying assumptions like ne-
glecting time dependency, has added a layer of sophistication
to our model. This network, capable of recursive updating
based on sensor input, highlights the potential for real-time
application in various fields, including autonomous systems
and surveillance.

Future work can be extended to different modalities and
more complicated decision fusion methods considering tem-
poral information can be included like dynamic Bayesian
networks.
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